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In this paper we present a Brownian dynamics simulation study where we employ the algorithm of Ermak 
and McCammon including solvent flow in the calculation of the rheological properties of Hookean 
dumbbells in steady shear flow. We have also included the possibility of the excluded volume and we have 
studied several possibilities with and without hydrodynamic interactions (HI). When hydrodynamic 
interaction is rigorously treated, the intrinsic viscosity is found to increase. If the Rotne-Prager-Yamakawa 
HI tensor is used instead of the Oseen tensor, the changes in the material functions are quite small. On the 
other hand, excluded-volume interactions produce, as expected, an increase in the viscosity. This is so both 
with and without HI. Our results are compared with those of other works in which the HI tensor is pre- 
averaged or consistently averaged. 
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I N T R O D U C T I O N  

In the theoretical description of rheological properties of 
polymer solutions there is a complex interplay between 
chain statistics, solution flow and hydrodynamic 
interactions (HI). It can be learned from standard 
monographs 1'2 that HI  effects have been traditionally 
neglected or treated in approximate ways such as by pre- 
averaging procedures. Recently, the increasing avail- 
ability of computing power has stimulated the 
development of simulation procedures for polymer 
dynamics, which are either of the Monte  Carlo 3'4 or the 
Brownian dynamics (BD) 5,6 type. While Monte  Carlo 
techniques are appropriate for translational diffusion and 
even the zero-shear intrinsic viscosity, BD simulation 
seems the proper choice for rheological properties. 
Indeed, BD has already been applied to study the non- 
equilibrium statistics of model chains in shear flows 7-11, 
although neglecting HI  effects. 

On the other hand, there have been recent attempts to 
improve the approximate inclusion of HI  (via averaging) 
in the description of shear behaviour. Thus, 
0 t t inger  a 2-14 has included consistently averaged HI  at 
the Oseen level 2 in the dynamics  of the simplest model, 
the Rouse or Hookean dumbbelP 5,16, and L6pez de 
Haro  and Rubi 17 have gone beyond the Oseen level to 
consider the influence of finite bead size 18-21. A direct, 
numerical solution of the diffusion equation for 
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dumbbells, with non-pre-averaged Oseen HI,  has been 
presented by Fan 22. Analytical results with HI  are 
available only for zero shear rate 23'24. 

In this Paper  we employ the Brownian dynamics 
simulation algorithm of Ermak and McCammon  5'25-2T, 
including solvent flow 28, in the calculation of the material 
functions of Hookean dumbbells in steady shear flow. We 
consider several possibilities regarding HI,  and the results 
are compared with those from the analytical and 
numerical studies mentioned above. 

M E T H O D S  

Our polymer model is the simple Hookean dumbbell,  
which has two spherical beads with radius o- and friction 
coefficient ~=6n~/0a, where r/0 is the viscosity of the 
solvent. We consider identical beads for simplicity, 
although there is no restriction in this regard. The beads 
are joined by an elastic connector to which a force 

r = H R  (1) 

is associated, where R is the  vector j o iningthe centres of 
the beads and H is the spring constant. If  rl and r z are the 
position vectors of the beads, we have R = r2 - r l .  In the 
absence of flow, the equilibrium mean squared distance 
between beads is 

(R2~0 -- b 2 --- 3 k a T / H  (2) 
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where kBT is the Boltzmann factor. A characteristic time 
is usually defined as 

2n = ( /4H = nqoab2/2kB T (3) 

The motion of the polymer model is governed by the 
stochastic differential equation of Langevin. The reader is 
referred to reference 29 for useful general information on 
this type of equation. Although sophisticated algorithms 
for stochastic differential equations are available, we have 
chosen for this work the simple algorithm proposed by 
Ermak and McCammon 5'26'27. In this procedure, which 
has a fixed time step At, the equation of motion is 

o A t  ~ o ~ / t ? O q \ °  
r i = r i + - - ) ' D i j ' F } j  + A t ~ l - - /  

ks T .i .i \ t3r j ] 

+ Atv(~) + pO (At) i,j = 1,2 (4) 

The superscript o in r ° and elsewhere refers to the instant 
at which the time step begins. D°~ is the ij block of the 
diffusion tensor, and F ] = - F 2 = H ( ~ 2 - ~ ) . v ( ~  ) is the 
velocity of the solvent at the centre of the bead. For  steady 
shear flow, vx = yO~, vr = v~ = 0, where ~ is the shear rate. Pi 
is a Gaussian random vector with zero mean and a 
variance-covariance matrix given by 

(p~At)p~(At) ) = 2AtD°~ (5) 

If HI is neglected, one has 

DO = ( k ~ T / ( ) l  (6) 

and Di°i = O for i ¢ j .  The gradient term is also zero and 
equation (4) reduces to 

r, = r°+ (At/()k~'~ + p°(At) (7) 

which is the algorithm used by Dotson and co- 
workers s,9, ~ 1. 

At the next level, HI can be described by the Oseen 
tensor. Then Du is given by equation (6) and for i ~ j  we 
have 

Dij = (kaT/8nqoR)(l + R R / R  2) (8a) 

or 

where 

Oq= h*(n/3)I/2(3kBT/4()(b/R)(I+RR/R 2) (8b) 

h* = (3/n)l/2~/6nrlob (9) 

is the usual HI parameter with values 0~<h* <0.3, with 
h * = 0  when HI is neglected. If the beads are Stokes 
spheres, as it is assumed throughout this Paper, then 
h* = (3/n)l/Za/b. Finally, we note that ODij/Sr ~ is also zero 
for Oseen tensors. It is well known that the Oseen tensor 
is not positive definite at small distances R < 2a. In that 
case the gradient is given by equation (7) in Reference 27. 

At the following level, the influence of the finite size of 
beads in the HI is accounted for by means of Rotne-  
Prager-Yamakawa ~s'~9 tensors. Dii is again given by 
equation (6) and, for non-overlapping beads (R ~> 2a), we 
have 

D i j  = h* (n/3) 1/2(3k B T/4f)(b/R)  

x [ I+  R R / R  2 + (2aE/aR2)(I - 3RR/R2)]  
(10) 

with zero gradient. If the beads are allowed to overlap 
(R <2a) ,  the Rotne-Prager  tensor 19 is 

1) U =  ( k B T / ~ ) r ( 1  - 9 R / 3 2 a ) I +  (3/32a)RR/R2)] (11) 

Although no restriction has to be placed in principle on 
the interbead distance R, one may wish to evaluate 
excluded volume effects by forbidding conformations 
with overlapping beads. To do so, if the values ofr~ and t 2 
after a time step (equation (7)) are such that R < 2a, with 
an overlap e = 2a - R, additional displacements - (e /R)R 
and (e/R)R are added to rl and r2, respectively. These 
displacements do not move the centre of the dumbbell 
and do not change its orientation, and are the same as 
those produced by a hypothetical hard-spheres collision 
during the step. 

In the simulation work it is useful to work with 
dimensionless quantities. The following normalization 
factors are used: length, b; translational friction, 

= 6nr/oa; energy, kBT; translational diffusion 
kaT/6nqoa; time, 6nrloab2/kBT; and shear rate, 
kBT/6nqoab 2. In this way we have (numerically) b=  1, 
kBT = 1, ( = 1, H = 3, 2H = 1/12, a = 1.023h*. The time step 
must be small enough so that the force and the diffusion 
tensor do not change appreciably during the step. This is 
the practical condition of validity of equation (4). 
However, it should also be as large as possible so that for 
a given number of steps the trajectory is long enough. We 
have found empirically that At = 0.01 in the above units is 
a convenient choice. Typically, the simulated trajectories 
were composed of 5 × l0 s steps, divided into 25 sub- 
trajectories of 2 x 104 steps. The averages of properties 
were computed for each subtrajectory, and from them we 
evaluated the trajectory averages and their statistical 
uncertainties. 

The primary rheological property is the stress tensor, 
given by the Kramers expression 1 

z = - rio ~ - n ( R F )  + nkB T I  (12) 

For  simple shear flows, all the components of the ~ tensor 
are zero except ~xy = ~yx =~. n is the number density of 
polymer molecules, / the unit tensor and ( . . . )  denotes an 
ensemble average that in the simulation work is identified 
with the trajectory average. From the stress tensor we 
obtain the material functions, namely the viscosity 

11 = - Zxy/~ = ~1 o + n(  RxFr)  /~ (13) 

and the first and second normal stress coefficients, 

tp , = n[ < RxF~) - < RrFr)  ]/p 2 (14) 

tP 2 = n[ < gyFr)  - < R=F=) ]/~ 2 (15) 

Equations (13)-(15) follow directly from equation (12) 
and the definition of the material functions. For  the 
Hookean dumbbell considered in this work one makes 
the additional simplification of substituting 
<RF) = H < R R ) .  Thus, all the material functions can be 
extracted from the tensor ( R R ) ,  whose trace is the mean 
squared end-to-end distance, ( R 2 ) = t r ( R R ) .  

RESULTS AND DISCUSSION 

Figure 1 displays the BD simulation results obtained for 
(R  2) as a function of reduced shear rate. If HI is 
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Figure 1 Relative increase of end-to-end distance v e r s u s  reduced shear 
rate 28;?. , Prediction of equation (16b). BD results are: O,  
without HI; O,  with Oseen HI; D, with Rotne-Prager-Yamakawa HI. 
The HI parameter is h* =0.25 

neglected, ( R  2) can be predicted analytically by means of 
the equation of Bird et al. ~ for a Rouse chain with N beads 
particularized for N =  2: 

(R2)/(R2)o = 1 + (1/45)N(N+ 1)(N 2 + 1)2~'~ 2 (16a) 

= 1 + ( 2 / 3 ) 2 ~  z (N=2)  (16b) 

where ( R 2 ) o  is the zero-shear-rate value. As shown in 
Figure 1 our BD results without HI, which are equivalent 
to those of Dotson s, are in perfect agreement with 
equation (16b). 

The effect of HI is more clearly shown in Figure 2, 
where the ratio of ( R 2 )  values with and without HI is 
presented as a function of shear rate. In general, HI 
produces an expansion of the dumbbell in the whole 
range of shear rate. The trend of this effect is early 
reasoned. At very low shear r a t e  (R2~HI and (R2~noHi a r e  
both very close to  ( R E ) 0  and their ratio is close to one. 
On the other hand, at very high shear rate the two beads 
are well separated and the HI effect will be very weak, so 
that ( R E ) H I ~ ( R E ) n o  HI, with a ratio approaching 
unity again. Thus, one expects a maximum that, as 
shown in Figure 2, takes place at 2 H ~ l  with 
(R2)HI/(R2),o m ~ 1.25. At low shear rate, the increase in 
(R  2) is more pronounced for the Oseen tensor. At higher 
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rates the results for both tensors coincide within the 
statistical uncertainty of the simulation. 

The intrinsic viscosity results are presented in Figure 3, 
where we have actually plotted the ratio 

[q]* = (q - qo)/nk. T2.  (17) 

so that if HI is neglected [q]* = 1 independently of shear 
rates. We see in Figure 3 that our BD simulation results 
without HI follow this theoretical prediction well, within 
statistical error, except for a small, apparently systematic 
deviation that appears at very low shear rate. We note 
how the simulation error increases with decreasing shear 
rate. This is so because (RxFr) goes to zero 
proportionally to ~. 
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Figure 2 Ratio of (R2)m (with HI) to (R2)notti (without HI) v e r s u s  

2H~. (3, Oseen HI; [3, Rotne-Prager-Yamakawa HI (h*=0.25). The 
error bars are for the Oseen HI results. The errors of the other set of 
results are similar 
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Figure 3 Intrinsic viscosity [q], normalized to the value without 
hydrodynamic interaction, v e r s u s  shear rate. (a) Simulation results 
without HI. (b) BD results with (C)) Oseen and ([]) Rotne Prager- 
Yamakawa tensors. - - - ,  Numerical solution of the diffusion equation 
obtained by Fan 22 
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The BD results with HI are also displayed in Figure 3, 
along with those from the numerical solution of the 
diffusion equation with the Oseen tensor obtained by 
Fan 22. Taking the latter as reference, our BD results with 
Oseen interaction are found to be in semi-quantitative 
agreement. At low i ,  the BD simulation seems to 
overestimate [I/] by about 5 ~ (as happened for the no-HI 
case), and for high p the simulation results are about 10 ~o 
below those of Fan 22. The discrepancies between our BD 
results and the numerical results of Fan are of the same 
order as those found for BD values of translational 
diffusion coefficients and rotational relaxation times of 
rigid dumbbells and trimers 27. The p = 0 value given by 
Fan coincides with the analytical result of Pyun 23, 
[q ]*=(1-0 .990h*)  -1, with [~/]*=1.33 for h*=0.25. 
Although it would be desirable to run BD simulations 
with smaller At and longer trajectories, our results, at 
least, demonstrate the validity of the BD simulation 
technique for evaluating material functions and 
predicting semi-quantitatively their shear-rate 
dependence. 

Results for the first normal coefficient, normalized to 
the value with no HI, as before, 

~P* = W,/2nkBT22H (18) 

are plotted in Figure 4. The trend of the results is very 
similar to that of the intrinsic viscosity. We also obtained 
results for the second normal coefficient. Owing to the 
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Figure 4 As for Figure 3 for the first normal stress coefficient, H* 

statistical error of the simulation, we could not detect a 
systematic departure from the no HI result, ~2  =0.  

The moderate time step used in the simulation could 
cause some error in the resulting values of the material 
functions. With At = 0.01, one would estimate an error of 
some 3~o for W13°. This situation could be more 
noticeable at high shear rates. For  instance, for 2n$ = 5, 
with 2n = 1/12 (in reduced units), the relevant time scale is 
2-1 =0.017, and our time step is not much smaller than 
this. The errors caused by our simple, fixed-step method 
are difficult to estimate. We recall, however, that the 
results without HI agree within simulation error with the 
theoretical prediction or expected behaviour (Figures 3-  
5). Since the problem is independent of HI, we think that 
our results are, in general, valid for the discussion that 
follows. 

To ascertain the influence of the excluded volume (EV) 
effect, simulations with hard spheres and without HI were 
carried out as described above. The results are presented 
in Figure 5. It is clear that the hard-spheres restriction 
produces an increase of the material functions at low or 
moderate shear rate (up to about 10 ~o in [t/] and 20 ~o in 
W1), and is negligible at higher rates. 

We recall the well known result 1 that when 
hydrodynamic interactions are described by the pre- 
averaged Oseen tensor, Dij = (kBT/6ntloR)L the material 
functions turn out to be shear rate independent, given by 
[q]* = (1-2½h*) -1, W* = (1-2½h*) -2 and ~P* =0.  

Figure 6 summarizes the results for the shear rate 
dependence of the intrinsic viscosity obtained in various 
treatments. Lines a and f correspond to the results 
without HI and with pre-averaged HI, respectively, in the 
absence of EV. Curve b represents the trend followed by 
the no HI results with excluded volume that were 
displayed in Figure 5. The results of Fan 22, with Oseen 
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Figure 5 Simulation results for [~] and H1 versus 2H~ for dumbbells 
with hard, non-overlapping spheres (R > 2o) and without HI 
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Figure 6 Variation of viscosity with shear rate for dumbbells with 
h* =0.25, according to various treatments, a, No HI, no EV; b, no HI, 
EV (this work); c, OS (RPY), no EV (Reference 22, this work); d, CA, 
RPY, E¥1~; e, CA, OS, no EV12; f, PA, OS, no E¥. Codes: no HI, 
without hydrodynamic interaction; OS, Oseen interaction; RPY, 
Rotne--Prager-Yamakawa interaction; PA, pre-averaging; CA, 
consistent averaging; EV, excluded volume 

interaction, are given by curve c, which also represents 
our BD simulation results with the Oseen and the 
modified (Rotne-Prager-Yamakawa) tensors. Curves d 
and e are those obtained with the consistent averaging 
procedure; e is for Oseen interaction without EV 12 and 
d is for the modified tensor and EV 17. 

From the works of Pyun and Fixman 23'24 on the zero 
shear rate viscosity and Fan 22 on the shear rate 
dependence, we know that hydrodynamic interaction at 
its lowest (Oseen) level causes an increase in [~/] over the 
no HI value and a non-Newtonian, shear rate dependent 
behaviour. This situation is illustrated by comparing 
curves a and c in Figure 6. Our simulation results 
indicate that the improvement in HI introduced by the 
Rotne-Prager-Yamakawa tensor has quite a small 
influence. It seems, therefore, that the Oseen description 
is acceptable. 

In their consistent average treatment, Lrpez  de Haro 
and Rubi 17 included a hard-sphere, excluded-volume 
effect as a natural complement to the consideration of 
finite bead size by means of the modified interaction 
tensor. It is not clear to what extent the EV refinement can 
be relevant in a very idealized polymer model such as the 
Hookean dumbbell. Overlooking this point, we see that 
the bare EV effect (in the absence of HI) produces, as 
shown by curves a and b in Figure 6, the onset of non- 
Newtonian behaviour and an increase in [~/]. The latter 
fact was expected, since the most immediate consequence 
of EV is an increase in the particle's dimension, and this 
should cause an increase in [~/] at low shear rate. For  high 
shear rate, the dumbbell is much more elongated, the 
distance R is, on the average, much greater than the size 
2tr and the EV effect is negligible. 

To check the influence of EV in the presence of HI, we 
carried out a few simulations with the Oseen tensor and 
hard-spheres interaction. The results (not shown in 
Figure 3) are slightly (roughly 10~o) higher than those 
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with Oseen tensor and without EV at low shear rates, 
while at higher shear rates the results with and without 
EV effect coincide within statistical error. Thus the 
influence of EV displayed in Figures 5 and 6 does not 
depend on the inclusion of HI. 

It is also well known that pre-averaging of the 
hydrodynamic interaction gives a value for I-r/] which is 
too high and shear rate independent. An improved 
treatment is the consistent average treatment developed 
by (3ttinger 12, in which the non-equilibrium distribution 
function is used to average the HI tensor. Regarding 
curve c as the correct result, it is clear that (3ttinger's 
curve e is better than the pre-averaging result f. The 
introduction of higher-order HI and EV in the curve, d, 
of Lrpez de Haro and Rubi produces a further 
improvement. These authors and we have demonstrated 
that the influence of EV is much more remarkable than 
that of higher-order terms in HI. Therefore, the decrease 
in I-r/] from e to d is mostly due to excluded volume. Thus 
the consistent average procedure predicts that the EV 
effect should decrease It/]. This prediction is contrary to 
the physical intuition, confirmed by our results, that [~/] 
should increase. As found in the study of many other 
related problems in polymer hydrodynamics, the 
averaging (a priori or consistent) of the HI tensor has a 
serious influence on the predicted dynamics of the model. 
Nonetheless, the consistent average treatment and its 
refinements modify the shear rate dependence of the 
material functions in the correct direction, and seem, 
therefore, to have a practical validity. The interest of such 
a treatment is enhanced by its quasi-analytical character. 
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